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Currently, with rapid expanding of urban area, the rate of conversion of agricultural
land to nonagricultural uses in China is increasing. Zoning farmland protection is an
important measure to protect limited land resource. This article presented an innovative
approach based on the integrated use of remote sensing, GIS, and artificial immune
systems (AIS) for generating farmland protection areas. Some modifications have been
made for conventional AIS so that it can be further extended to the solution of zoning
problems. The optimal objective is to generate farmland protection areas that minimize
development potential and maximize agricultural suitability and spatial compactness.
First, utility function by addressing the criteria of farmland protection is incorporated
into AIS algorithm. Second, encoding and mutation of antibodies is modified so that
it can be suited to the solution of spatial optimization problems. The AIS-based zon-
ing model was then applied to a case study in Guangzhou, Guangdong, China. The
experiments have demonstrated that the proposed method was an efficient and effective
spatial optimization technique, which took only about 194 seconds to generate satisfied
farmland protection patterns. Furthermore, the AIS-based zoning model can explore
various alternatives conveniently, and it can yield better performances than nonpro-
tection scenario in the utility efficiency of land resources and the site condition for
farmland.

Keywords: artificial immune systems (AIS); farmland protection; compactness; GIS

1. Introduction

Following the 1978 reforms, China’s rapid urbanization has resulted in a series of envi-
ronmental and ecological problems (Seto 2002, Li and Liu 2008). One problem is that
a large amount of farmland was converted to urban uses and lost to agriculture forever
(Yeh and Li 1999). According to official government statistics, China lost over 14.5 mil-
lion hectares of farmland between 1979 and 1995 (Lichtenberg and Ding 2008). Most of
the loss had occurred in coastal and central cites, where land is relatively fertile and cli-
mate is benign. It is well known that China is a country with the largest population and far
below average per capita farmland resource (Li and Yeh 2001). Therefore, the encroach-
ment of urban development onto farmland has placed a tremendous pressure on limited
farmland resources (Yang and Li 2000). Farmland is an irreplaceable and nonrenewable
natural resource, which contributes to the economic and ecological value of a community
(Chang and Ying 2005). The combined effects of the continuous increase in population
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and national food security have led to an urgent demand for farmland protection. Indeed,
the preservation of farmland has become a fundamental national policy in China (Brown
1995). Many benefits can be derived from the protection of productive farmland, including
local and national food security, the protection of rural and environmental amenities, the
promotion of compact pattern in reducing environmental costs, slowing suburban sprawl,
and providing wildlife habitat (Gardner 1977, Daniels and Bowers 1997).

The greatest loss of farmland has increasingly become an issue of local, regional, and
national concern in China. To guarantee national food security, the Central Government
had to implement specific policies aimed at protecting farmland, especially farmland with
the greatest production potential. In August 1994, the State Council promulgated the Basic
Farmland Protection Regulation to zone the best farmland for strict protection. The New
Land Administration Law, which was promulgated in August 1998, is also intended to pro-
tect agricultural lands in the legislative process. In 2008, the State Council promulgated
the National General Land Use Planning (2006–2020), which pointed out that tough mea-
sures should be taken to ensure the warning line of farmland with an area of 1.8 billion mu.
These legislations or measures have played a crucial role to control conversion of farmland
with high productivity to nonagricultural use. However, the amount of farmland has con-
tinued to decrease, especially in expanding metropolitan areas and coastal regions. Perhaps
the lack of a scientific method for zoning protected farmland is one of the major reasons.
Local government officials generally carried out the zoning in an arbitrary manner (Li and
Yeh 2001). Although some brief guidelines have been given in the legislation, they are
difficult to follow in practice because of the lack of quantitative criteria. Therefore, there
is a need to provide a more scientific and effective framework to assist local government
officials in zoning protected farmland.

Farmland zoning usually involves the analysis of a large amount of spatial data. The
integration of remote sensing and GIS can provide the spatial data and the spatial analyst
tools. Internationally, GIS and remote sensing technologies have been used in the assess-
ment, zoning, and planning of farmland. For example, Li and Yeh (2001) demonstrated the
potential of integrating GIS, cellular automata (CA) model, and remote sensing for zon-
ing farmland protection. Carsjens and Van Der Knaap (2002) explore the utility of GIS
to help solve problems of farmland spatial allocation. Tulloch et al. (2003) describe their
attempt to integrate GIS into farmland preservation policy and decision making. Dung and
Sugumaran (2005) combined the Land Evaluation and Site Analysis (LESA) system with
GIS to provide decision support tools for mangers in farmland protection. LESA, which
is developed by the US Soil Conservation Service, has been widely used to guide agricul-
tural zoning and to implement farmland protection. Machado et al. (2006) developed an
approach that integrated GIS, remote sensing, and the LESA to zoning farmland preserva-
tion for multiple objectives. However, most of these approaches did not take into account
spatial constraints, such as patch size and compactness. A fragmented pattern will be pro-
duced without incorporating spatial constraints in the farmland zoning. Fragmentation of
farmland may lead to declining agricultural productivity and profitability (Levia 1998).
Moreover, the isolated farm parcels have negative impacts on rural scenic quality and
protected areas management (Brabec and Smith 2002).

Difficult decisions must often be made that evaluate the trade-off between farmland
potential and development potential in farmland zoning. Farmland preservation plan should
consider urban development potential because land consumption is crucial for sustain-
ing economic growth in China. However, the very qualities that make some lands the
most productive for agriculture also make them highly suitable for urban development.
Unfortunately, urban development and farming are incompatible land uses. As develop-
ment encroaches upon agricultural areas, it becomes irretrievably lost. In this situation,
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optimal farmland protection is a complex multi-objectives problem because some conflicts
are inevitably involved. Moreover, farmland zoning should take into account spatial con-
straints, such as patch size and compactness. Farmland zoning under spatial constraints
belongs to the NP-hard problem with a huge complex search space and therefore requires
efficient optimization methods. Heuristics should be adopted because exact enumeration
methods are impossible to solve such hard combinatorial optimization problems in a
reasonable amount of time.

This research proposes an approach based on the integrated use of remote sensing,
GIS, and artificial immune systems (AIS) for zoning farmland protection. AIS, a new
computational method inspired by the biological immune system, was first proposed by
Jerne (1974). As a heuristic method, AIS can learn new information, recall previously
learned information in a highly decentralized fashion, and can tackle complex real-world
problems. Since its proposal, AIS has been applied to solve various problems, such as
pattern recognition (Carter 2000), intelligent optimization (Chun et al. 2002), machine
learning (Timmis 2000), adaptive control (Kumar and Neidhoefer 1997), and fault detec-
tion (Dasgupta and Forrest 1995). Many studies have demonstrated that AIS possesses
several attractive immune properties that allow it to get out local optima and avoid pre-
mature convergence (Bersini and Varela 1991, Fukuda et al. 1998). Actually, the features
of self-adapting, diversity, dynamic learning, distributed computation, and memorizing of
AIS make it promising in solving complex geographical problems (Liu et al. 2010). In
recent years, AIS has been used successfully to solve geographical problems, such as urban
simulation (Liu et al. 2010) and remote sensing classification (Zhong et al. 2007). These
researches have demonstrated that AIS is a potentially useful algorithm for providing an
acceptable solution to complex geographical problems.

This article will explore the integration of GIS, remote sensing, and AIS as a planning
tool for zoning farmland protection. AIS will be modified so that it can be suited to gen-
erate farmland protection areas. The objective is to generate protected farmland protection
areas that minimize development potential and maximize agricultural suitability and com-
pactness. It is expected that the attractive immune properties of AIS can produce better
performance in handling complex heterogeneous spatial data for optimal solution search.
The proposed AIS method is then used to zone protected farmland areas in Guangzhou,
a rapid growing region in the Pearl River Delta, China, and it can yield good perfor-
mances. Lastly, the proposed method can explore various alternatives conveniently by using
different combinations of weights.

2. Natural and artificial immune systems

Biological systems are serving as inspirations for a variety of computationally based learn-
ing systems, such as artificial neural networks, genetic algorithms, and swarm intelligence.
Recently, there has been increasing interest in using the biological immune systems as a
metaphor for computational intelligence approaches. From a computing standpoint, natural
immune systems can be viewed as a parallel, self-adapting, self-learning, self-organizing,
and distributed system that has the capability to control complex systems over time (King
2001). Inspired by theoretical immunology and observed immune system function, AIS is
rapidly emerging as a kind of soft computing methods. It is capable of offering powerful
and robust information processing capabilities for solving complex real-world problems
(Tarakanov and Dasgupta 2000).

Natural immune system consists of a complex of cells, molecules, and organs that aim
to protect the body against infection (Castro and Timmis 2002). AIS mimics the defense
mechanism of the body by means of adaptive immune responses. The main component
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of adaptive immune response is lymphocytes, which divide into two classes as T and B
cells. The main functions of the B cells include the production and secretion of antibodies
as a response to exogenous proteins such as pathogens, bacteria, and other toxins that
may be harmful. The B cells that are not stimulated as they do not match any antigens
in the body will eventually die. On the contrary, the activated B cells with high antigenic
affinities are selected to become memory cells. If the same antigens invade once again,
the memory cells rapidly divide into plasma cells, and a large quantity of antibodies is
generated in a very short period (Castro and Timmis 2002). The functions of the T cells
include the regulation of actions of other cells and direct attack of the host-infected cells;
the T cells can either help or suppress the B cells’ response to a stimulus. Many immune
response phenomena, such as clonal selection, immune memory, and negative selection,
can be modeled as corresponding reactions and added to AIS algorithm.

Among the AIS methodologies, clonal selection algorithm (CSA) is perhaps the most
popular immune-inspired method in current use. CSA evolves the antibodies inspired by
the abstraction of the clonal selection principle, which was first proposed by Burnet (1959).
The clonal selection theory is used to describe the basic properties of an adaptive immune
response to an antigenic stimulus. It establishes the idea that only those cells with high
affinity to antigens are selected to proliferate. These selected cells can easily recognize
antigens and are subject to an affinity maturation process. The process of improving their
affinity to the selected antigens is called clonal selection (Secker et al. 2003). CSA mimics
the clonal selection mechanism and advocates iteratively improving candidate solutions
through a process of accumulated mutation and affinity-based selection.

3. AIS algorithm for zoning farmland protection

3.1. Formulation of zoning protected farmland under spatial constraints

Zoning protected farmland is one instance of the more general problem of land use plan-
ning, which can be formulated as spatial optimization problems. There are three planning
objectives in prioritizing sites for the preservation of farmland. These objectives include
the following:

(1) Maximize agricultural suitability.

This objective tends to focus on preserving high-quality farmland. Agricultural suitabil-
ity serves as a crucial aid for zoning farmland protection, and it can be estimated from
a series of spatial factors that are retrieved from remote sensing and GIS data. Criteria
for measuring agricultural suitability are typically related to soil quality, irrigation status,
site condition, and slope. Soil quality is based on soil biophysical and chemical properties,
including soil fertility, soil depth, and pH value. Site condition is determined by the number
of farmland and the number of urban in neighboring areas. Sites in good condition are sur-
rounded by farmland, whereas those in poor condition occur in areas with high proportion
of urban. Site condition (Cs) can be calculated using the following equation:

Cs = Nf

25 + Nu
(1)

where Nf refers to the number of farmland in a 5 × 5 neighborhood window and Nu

represents the total number of urbanized cells in a 5 × 5 neighborhood window. The
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equation with the denominator as 25 + Nu will guarantee that site condition (Cs) ranges
from 0 (poor condition) to 1 (good condition).

The Multicriteria Evaluation (MCE) (Eastman et al. 1998) method is used to estimate
agricultural suitability according to the above spatial factors, which should be standardized
within the range of [0, 1] before the estimation. The total score of suitability is created by
a linear weighted combination method:

Suit = w1 × Fs + w2 × Ds + w3 × pH + w4 × Is + w5 × Slope + w6 × Cs (2)

where Fs is the soil fertility, Ds is the soil depth, and Is is the irrigation status. w1, w2,
w3, w4, w5, w6 are the weights for each factor, and the total of all the criterion weights
is equal to 1.

(2) Minimize development potential.

The potential of urban development should also be taken into account because farmland
protection should not totally deny future economic development. Land consumption is
crucial for sustaining economic growth in China. Furthermore, close proximity to rural
residences, urban service areas, and municipal boundaries may increase development
pressures on farmland (Land Information Bulletin 2000). This is generally due to lower
development costs. Therefore, there are negative effects if the selected site has high poten-
tial of urban development. The development potential is regarded as a negative factor for
protection, and it can be estimated as follows:

Dev = b1DDistrict + b2DTowns + b3DRailways + b4DExpressways + b5DRoads + b6ρUrban (3)

where DDistrict is the distance to district center, DTowns is the distance to towns, DRailways is
the distance to railways, DExpressways is the distance to expressways, DRoads is the distance to
roads, and ρUrban is the density of urban land in a 7 × 7 neighborhood; bu (u = 1, 2,. . ., 6)
is the weight of each variable and is subject to b1 + b2 + b3 + b4 + b5 + b6 = 1.

(3) Maximize the compactness of spatial pattern.

Farmland that comprises a large contiguous area may be the pattern most worth mapping
and preserving. This is because the compact pattern of farmland area is generally more
productive and profitable. Moreover, reducing site fragmentation may mitigate urban devel-
opment pressures, facilitate management, and offer a broader rural aesthetic presence. The
compactness index is used to avoid the fragmentation of farmland patterns. It is calculated
according to the following equation:

Cp = LMaxSum − LSum

LMaxSum − LMinSum
(4)

where LSum is the sum of perimeter of a protected scenario. It is common sense once the
area is known; the most compact form would be circular and the minimum sum of perime-
ter (LMinSum) can then be calculated. On the contrary, if the selected sites are separate from
each other, the maximum sum of perimeter LMaxSum then can be obtained.

According to these objectives of farmland protection, zoning protection problem can be
formulated using the following equations:
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Maximize
∑

i

Suitixi (5)

Minimize
∑

i

Devixi (6)

Maximize Cp (7)

∑
i

xi = Q (8)

xi =
{

1 if the site i is included in the protection
0 otherwise

(9)

where Suiti is the agricultural suitability of site i, Cp is the compactness index of a protected
pattern, Devi is the development potential of site I , and Q is the total area of the protection.
Obviously, zoning farmland protection is a typical multi-objective problem. Generally, a
simple additive weighting method is employed to create a composite score for solving
multi-objective problem. Accordingly, the objection function of farmland protection can
be defined as follows:

Utility = ws × Sf − wd × Dp + wc × Cp ∀ ws + wd + wc = 1 (10)

Sf =
∑

i
Suitixi

Q
(11)

Dp =
∑

i
Devixi

Q
(12)

where Sf is the average total agricultural suitability; Dp is the average total development
potential; ws, wd, and wc are the weight of agricultural suitability, development potential,
and compactness, respectively.

3.2. Zoning protected farmland by integrating AIS, remote sensing, and GIS

AIS is a heuristic algorithm that mimics immune theory to solve combinatorial optimiza-
tion problems. Recently, AIS has been modified to simulate urban development and classify
remote sensing data (Zhong et al. 2006, Liu et al. 2010). This article further modifies AIS
algorithm to solve zoning protection problems. Figure 1 illustrates the procedure of zoning
farmland protection by integrating remote sensing, GIS, and modified AIS. Remote sensing
can be used to obtain the information of land use and urban development. GIS can provide
the tools for the analysis of spatial data. AIS is designed to generate protected farmland
based on agriculture suitability map and development potential map. The details of AIS
algorithm for solving zoning protection problem are provided in the following sections.

3.2.1. Encoding and initialization of antibodies

An initial population of antibodies is generated randomly in a given bound for the zon-
ing problem. Each antibody that represents a candidate solution is encoded by a binary
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Figure 1. The procedure of zoning farmland protection by integrating GIS, remote sensing,
and AIS.

two-dimensional array. In this article, the size of array is equal to the size of the study
region (R × C). As illustrated in Figure 2, if the cell is included in the protection, its code
is assigned to 1. Otherwise, the code of cell is assigned to 0. At the start of the optimiza-
tion, these two types of cells are randomly positioned in the study region (R × C) for each
antibody.

3.2.2. Clonal selection and mutation

In immunology, affinity is the fitness measurement for an antibody. For the zoning farmland
problem, the affinity corresponds to the value of the objection function, Equation (10). The
antibodies are ranked in descending order based on their affinity values. The m antibodies
with the highest affinities are selected for the cloning operation. Each of these selected
antibodies receives a number of copies proportional to its affinity. That is, the higher an
antibody’s affinity is, the more clones it will have. The total amount of clones generated
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Figure 2. Encoding of antibodies for solving zoning problems. 1: protected farmland, 0: others.

for all these m selected antibodies is given by the following equation (Babayigit et al.
2008):

Mc =
m∑

h=1

round

(
β∗M

h

)
(13)

where round(·) is the operator that rounds its argument toward the closest integer, M is
the total number of antibodies, β is a multiplying factor to control the total number of
antibodies of the new generation, and h is the antibody’s current rank where h ∈ [1,m], m
being the number of selected antibodies for the cloning operation.

After cloning, the clones are mutated to increase their diversity. Mutation is an impor-
tant operation in AIS algorithm. Mutation means that random changes take place in a region
of the permutation. The mutation rate for an antibody is inversely proportional to the affin-
ity of that antibody: the higher the affinity, the smaller the mutation rate. The mutation rate
is given as follows:

θ = θ0 ×
(

1 − A

μ

)
(14)

where A is the affinity of antibody. θ0 and μ are constants to control the mutation rate.
In mutation operation, we randomly select a cell that is included in the protection. Then

this cell will be exchanged with another cell that is not included in the protection. The
number of cell swaps depends on the mutation rate – the higher the mutation rate, the more
cells to be exchanged. After exchange of its sites, the affinity of antibody is calculated
newly according to Equation (10). If the affinity is improved, the mutation operation is
accepted. Otherwise, the mutation operation is accepted by a small probability:

ρ = γ × ∣∣A∗
t − A∗

t−1

∣∣ (15)

where A∗
t is the total average affinity of antibodies at time t, A∗

t−1 is the total average affinity
of antibodies at time t – 1, and γ is a constant. Thus, if the total average affinity is stable,
the mutation rate is very small.

The antibodies in the antibody library will gradually obtain increasingly higher affini-
ties. This process is called affinity maturation, which generates a mature population C∗.
Then, the individuals in population C∗ with better affinities are selected to compose the
memory set. Finally, those antibodies with low affinity in the initial population are replaced
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by the improved individuals of C∗ to maintain the antibody diversity. The clonal selec-
tion and mutation processes repeat until a termination criterion is met or a predetermined
generation number is reached.

4. Model implementation and results

4.1. Study area and spatial data

The proposed model was applied to zone protected farmland in Guangzhou, which has
an area of 7434 km2. Guangzhou is located at the center of the Pearl River Delta in
Guangdong. The study area consists of 556 × 761 pixels, with a ground resolution of
200 m. With its combination of fertile soils, benign climate, and good irrigation status, the
Pearl River Delta is one of the premier agricultural areas of China. However, because of
rapid urban development and poor land management, a large amount of farmland has been
converted into urban areas, especially in the metropolitan region of Guangzhou. There
is an urgent demand to zoning protected farmland to ensure food security and sustain
environmental quality.

Landsat TM images of Guangzhou in 2003 and 2008 were used to obtain the informa-
tion about land use changes. The classified data reveal the fast farmland lost in this period
and provide the empirical information for calibrating the CA model, which was used to
simulate future distributions of urban areas. A 30 m DEM data is used to produce the slope
data. Soil biophysical and chemical properties, including soil fertility, soil depth, and pH
value, are obtained from Guangdong Institute of Eco-environment and Soil Sciences. Five
proximity variables (distance to district, distance to towns, distance to railways, distance
to expressways, and distance to roads) and density of urban land are used to produce the
potential of urban development. All these spatial variables (factors) are converted into a
raster format by using GIS (Figure 3).

4.2. Agricultural suitability and development potential analysis

One of the most important steps in the process of land use planning is suitability analysis,
which determines whether the requirements of land use are adequately met by the prop-
erties of the land (Steiner et al. 2000). Suitability analysis involves a number of spatial
variables (factors) that are used to evaluate the suitability score. Six factors are selected for
agricultural suitability analysis, such as soil fertility, soil depth, pH value of soil, irrigation
status, site condition, and slope. Five proximity variables and density of urban land are
used to evaluate development potential. All these spatial variables (factors) are integrated
into a raster-based GIS software and spatial analysis is performed using overlay techniques.
Then, the relative weights of different factors are calculated by using the analytic hierarchy
process, which is a theory of measurement through pairwise comparisons and relies on the
experiences of experts to derive priority scales (Saaty 1990). Tables 1 and 2 provide these
weights of different factors for agricultural suitability and development potential, respec-
tively. Figure 4 demonstrates the final agricultural suitability and development potential
map, which was produced by integrating these above spatial variables and weights through
overlay techniques.

4.3. Results of protected farmland areas

The modified AIS model was used to generate farmland protection patterns. The required
area for the preserved farmland is assumed to be 1123 km2with reference to the strategic
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1838 X. Liu et al.

Figure 3. Various spatial variables for agricultural suitability and development potential analysis.

Table 1. Weights for calculating agricultural suitability.

Factors Soil fertility Soil depth pH value Irrigation status Site condition Slope

Weights 0.303 0.098 0.044 0.124 0.305 0.126

Table 2. Weights for calculating development potential.

Factors DDistrict DTowns DRailways DExpressways DRoads ρUrban

Weights 0.055 0.142 0.082 0.235 0.402 0.084
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Figure 4. (a) Agricultural suitability and (b) development potential map of Guangzhou. (a) Soil
fertility, (b) soil depth, (c) pH value, (d) irrigation status, (e) site condition, (f) slope, (g) distance
to district, (h) distance to towns, (i) distance to railways, (j) distance to expressways, (k) distance to
roads, and (l) density of urban land.

Table 3. Different sets of sub-objective weights used for zoning farmland protection.

Option Agricultural suitability Compactness Development potential

A 1.00 0.00 0.00
B 0.75 0.25 0.00
C 0.50 0.50 0.00
D 0.25 0.75 0.00
E 0.50 0.25 0.25
F 0.25 0.25 0.50
G 0.25 0.50 0.25
H 0.34 0.033 0.33
I 0.75 0.00 0.25
J 0.40 0.20 0.40
K 0.20 0.40 0.40
L 0.40 0.40 0.20

planning of Guangzhou. This model can be used to generate alternative farmland protec-
tion patterns by using different combinations of weights for objectives in Equation (10)
(Table 3).

Figure 5 illustrates the optimization process of farmland protection patterns by using
AIS algorithm for option H. At the initial stage, farmland cells are randomly positioned in
the study region. As the iteration continues, farmland cells are allocated to the sites with
high agricultural suitability and low development potential. Furthermore, the formulated
patterns become more and more compact. It is found that the protection pattern becomes
stabilized when the iteration reaches about 200.

D
ow

nl
oa

de
d 

by
 [

Su
n 

Y
at

-S
en

 U
ni

ve
rs

ity
] 

at
 2

3:
05

 0
2 

D
ec

em
be

r 
20

11
 



1840 X. Liu et al.

Figure 5. The optimization process of farmland protection patterns by using AIS-based zoning
model. (a) Suitability, (b) t = 0, (c) t = 5, (d) t = 10, (e) t = 20, (f) t = 50, (g) t = 100, (h) t = 200, and
(i) t = 300; t: iteration times.
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Figure 6. Affinity improvements with iterations by AIS algorithm.

As shown in Figure 6, the affinity will increase significantly at the initial stage.
However, the affinity will become stabilized after the iteration is greater than 200, which
indicates that the antibodies are matured. The optimization spends only about 194 seconds
by using a computer with a Pentium IV 3.2 GHz CPU.

Figure 7 illustrates different optimal farmland protection patterns by using different
combinations of weights (Table 3). It is obvious that the compactness factor plays an impor-
tant role in deriving a feasible protection zone. The first combination is an extreme case
that does not take into account the compactness factor and development potential. As a
result, the optimal pattern (Figure 7a) is very fragmented because the compactness factor
is not included in the objective function. Figure 7b–d is the optimal pattern based on both
agricultural suitability and compactness. With the increase in the value of parameter wc,
the patterns become more and more compact. However, the increase of the compactness
is at the cost of agricultural suitability (Table 4). Figure 7e–h and j–l are the optimal pat-
terns by considering the trade-off between the agricultural suitability, compactness, and
development potential. It is found that the option H can generate a satisfactory protection
pattern according to the visual interpretation and comparison of the trade-off (Table 4).
The optimal solutions involving a weighted combination of agricultural suitability and
development potential are illustrated in Figure 7i. Note that in these solutions, with not
considering compactness factor, the optimal pattern is fragmented. As wd increases, devel-
opment potential factor becomes more important; the optimal solution allocates farmland
where development potential is lower (Table 4).

A further experiment was carried out to compare the performances of the modified
AIS model with those of the iterative relaxation (IR) (Eastman et al. 1995) and the density
slicing (DS) (Li and Yeh 2001). These two methods are applied to the same dataset by
using the defined weights in the option H so that the performance can be compared with
that of the AIS-based model. As shown in Figure 8 and Table 5, the AIS-based model
can generate protected areas with the maximum utility value and compact pattern. The
DS method generates the fragmented protected areas with minimum utility value. The
performance of IR method is better than that of the DS method, but its spatial pattern is
less compact than that of the modified AIS model.

4.4. Estimating the impact of future urban growth on farmland

Future urban growth impacts farmland in two ways. First, urbanized cells will be lost
to agriculture forever. Second, the high proportion of urban in neighboring areas for
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Figure 7. The optimal farmland protection patterns obtained by using AIS method with various
weighting scheme options.

remaining farmland will reduce site condition. In this article, we used a Geographical
Simulation and Optimization System (GeoSOS) to simulate the spatial pattern of urbaniza-
tion in 2040 with different optimal farmland protection patterns. GeoSOS is equipped with
a number of urban simulation modules that can be used to simulate urban dynamics. The
implementation of urban simulation is very convenient by using GeoSOS. The software
can be downloaded from http://www.geosimulation.cn. Urban areas in 2003 (Figure 9a)
and 2008 were used to provide the empirical information for calibrating the CA model. We
selected the module of logistic-CA in GeoSOS to simulate the distribution of urban areas
in 2040 without farmland protections. The logistic-CA model is developed by Wu (2002)
and applied to simulate rural–urban land conversions in Guangzhou. Figure 9b and c are
the simulated urban areas in 2008 and 2040, respectively, by using logistic-CA model. A
confusion matrix was calculated to quantify the concordance between the simulated and
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Table 4. Total suitability, compactness, and total potential with different sets of weights.

Option Total suitability Compactness Total potential

A(1,0,0) 22,290 0.7107 6742
B(0.75,0.25,0) 20,936 0.9244 5864
C(0.5,0.5,0) 20,912 0.9294 6554
D(0.25,0.75,0) 20,811 0.9345 6657
E(0.5,0.25,0.25) 21,165 0.9098 5892
F(0.25,0.25,0.5) 18,783 0.9483 4441
G(0.25,0.5,0.25) 20,183 0.9425 5388
H(0.34,0.33,0.33) 20,277 0.9386 5383
I(0.75,0,0.25) 22,199 0.7157 6250
J(0.40,0.20,0.40) 20,708 0.9165 5407
K(0.20,0.40,0.40) 18,768 0.9501 4456
L(0.40,0.40,0.20) 20,672 0.9334 5824

Figure 8. Protected farmland areas using (a) modified AIS, (b) DS, and (c) IR methods.

Table 5. Comparison of performances between AIS, DS, and IR methods.

Modified AIS DS IR

Compactness 0.9386 0.71512 0.8064
Utility value 0.8228 0.7633 0.7898

the actual development patterns (Table 6). The matrix reveals that the total accuracy of the
simulation is 82.4%, which means that the simulated image in 2040 is reliable.

Furthermore, different optimal farmland protection patterns are regarded as a con-
straint factor for the CA model. By inputting different zoning patterns (Figure 7), the CA
model will generate different scenarios of urban development (Figure 10). We overlaid the
simulated spatial patterns on the distribution of farmland map and the suitability map to
identify where farmland will be lost, and estimate the loss of agricultural suitability value.
According to Equation (1), site condition for remaining farmland was recomputed based on
different scenarios of urban development. The agricultural suitability loss can be calculated
using the following equation:
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Figure 9. Simulated urban areas in 2008 and 2040, respectively. (a) 2003 (original image), (b) 2008,
and (c) 2040.

Table 6. Simulation accuracies of the logistic-CA model for Guangzhou.

Simulated 2008 nonurban Simulated 2008 urban Accuracy

Actual 2008 nonurban 481,322 70,432 87.2%
Actual 2008 urban 57,981 120,186 67.5%
Total accuracy 82.4%

Aloss =
∑

i

Sag(i) (16)

where Aloss is the agricultural suitability loss and Sag(i) is the agricultural suitability at cell
i where land development will take place in the future (2008–2040).

To better evaluate the utility efficiency of land resources, the benefit index is further
proposed, which can be calculated by the following equation:

SB =
∑

i

(Sdev(i) − Sag(i)) (17)

where SB is the benefit index. Sdev(i) and Sag(i), respectively, refer to the development
potential and agriculture suitability at cell i where land development will take place in
the future (2008–2040).

Table 7 shows agricultural suitability loss, benefit index, average site condition, and
reduced site condition for urban simulations based on different optimal farmland pro-
tection patterns. The nonprotection scenario has the largest values for the indicators of
agricultural suitability loss because a large amount of farmland is converted into urban
land. Agricultural suitability is lost in a large block south of Guangzhou (Figures 7 and 8c).
Benefit index for the nonprotection scenario is lowest because agricultural suitability loss is
larger than that of other development scenarios. It is obvious that the development scenario
with option A has the lowest values for agricultural suitability loss, because this scenario
tends to focus on preserving farmland with high agricultural suitability. However, its ben-
efit index is also low. The development scenario with option C obtains the largest value
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Figure 10. Urban simulations based on various optimal farmland protection patterns.

of benefit index. By 2040, farmland is predicted to have reduced site condition because
of urban growth, especially in nonprotection development scenario. The development sce-
nario with option L has the largest value of average site condition, and its reduced site
condition is small.

5. Conclusion

Establishing farmland protection areas is an important measure for the Chinese govern-
ment to protect limited land resource and guarantee food security. This article proposed
a scientific, effective, and flexible method to zone farmland protection under spatial con-
straints by integrating GIS, remote sensing, and AIS. Remote sensing data are capable of
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Table 7. Agricultural suitability loss, benefit index, average site condition, and reduced site
condition with different development scenarios.

Option
Agricultural

suitability loss Benefit index
Average site

condition
Reduced site

condition

A(1,0,0) 17,276 24,891 0.1251 0.1194
B(0.75,0.25,0) 18,496 25,332 0.1255 0.1190
C(0.5,0.5,0) 18,520 25,751 0.1272 0.1173
D(0.25,0.75,0) 18,628 25,672 0.1264 0.1181
E(0.5,0.25,0.25) 18,369 25,404 0.1256 0.1189
F(0.25,0.25,0.5) 19,290 24,306 0.1192 0.1253
G(0.25,0.5,0.25) 18,867 24,800 0.1229 0.1216
H(0.34,0.33,0.33) 18,818 24,825 0.1228 0.1217
I(0.75,0,0.25) 17,907 25,507 0.1201 0.1244
J(0.40,0.20,0.40) 19,186 24,276 0.1152 0.1293
K(0.20,0.40,0.40) 19,334 24,254 0.1183 0.1262
L(0.40,0.40,0.20) 18,501 25,424 0.1273 0.1172
Nonprotection 21,901 23,955 0.0999 0.1446

obtaining the information of land use and urban development. GIS is used to overlay spatial
variables to make a composite map that acts as an agricultural suitability and development
potential map. Zoning farmland protection under spatial constraints belongs to the NP-hard
class because of a huge combinatorial solution space. It is impossible to solve such difficult
problems in a reasonable amount of time by using exact enumeration method. As a heuristic
method, AIS has been proved to be effective algorithm for solving complex combination
optimization problems. In this article, AIS is designed to generate farmland protection
areas based on agricultural suitability and development potential map. We make some con-
tributions in five aspects by extending AIS to the solution of farmland protection problems.
These contributions include the following: (1) An innovative and scientific framework is
proposed to support farmland preservation programs in developing countries. (2) Utility
function by addressing the criteria of farmland protection is incorporated into AIS algo-
rithm. (3) Encoding and mutation of antibodies is modified so that it can be suited to the
solution of spatial optimization problems. (4) Spatial constraints are taken into account for
farmland protection. This can avoid generating fragmented patterns. (5) It is important for
collaborative planning processes in which planners can explore and evaluate alternatives.
The proposed AIS-based zoning model offers opportunities to generate different optimal
farmland protection patterns by altering the weights of sub-objectives.

The AIS-based zoning model was applied to the zoning farmland protection in
Guangzhou, a rapidly urbanizing region. This large region consists of 556 × 761 cells.
The objective is to generate an optimal allocation pattern that minimizes development
potential and maximizes agricultural suitability and compactness. This problem requires a
large amount of computation time to solve by using the mathematical optimization method.
However, the proposed model took only about 194 seconds to generate satisfied farmland
protection patterns. Furthermore, the application shows that the AIS-based zoning model
can explore various alternatives conveniently.

A logistic-CA mode is then used to simulate urban development without farmland
protections. The experiment shows that simulated Guangzhou growth under current devel-
opment trend without farmland protection will lead to the loss of a great amount of
farmland. Furthermore, we simulate the spatial pattern of urbanization in the future with
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different optimal farmland protection patterns. The simulated results indicate that the farm-
land protection measure can preserve farmland with high agricultural suitability. Moreover,
farmland protection will obtain better results in the utility efficiency of land resources and
the site condition for farmland.
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